
Potential Strategies for High Speed Active Worms:
A Worst Case Analysis

Nicholas Weaver
U.C. Berkeley BRASS group

<nweaver@cs.berkeley.edu>

Last Revised: March 24, 2002

Abstract

Active worms, malicious programs which spread in a
completely autonomous manner, have the potential to
rapidly spread across the internet. Two important ques-
tions which must be answered when constructing de-
fenses is how fast a worm can spread and how long
a given worm can remain a significant threat on the
Internet, as these answers dictate requirements for de-
fenses. There are multiple obvious strategies, such as
hitlist scanning, topologically aware scanning, and local
subnet scanning, which result in very fast worms, able
to completely spread through the Internet in under an
hour. Other strategies would greatly enhance a worm’s
staying power, including permutation scanning and an
upgradeable design. By understanding these strategies,
it is possible to specify requirements for defenses to try
to prevent future outbreaks.

1 Introduction

Active worms, autonomous programs which spread
through the network by searching, attacking, and in-
fecting remote machines, have been a serious issue
since the development of the Morris internet worm[11].
Such male-ware can carry arbitrarily malicious payloads
which are spread rapidly to every vulnerable machine. In
order to build defenses against future worm outbreaks,
it is important to understand the capabilities of such
worms: how fast they can spread and how long they
can remain active on the Internet. The most effective
potential worms needs to be considered, not what previ-
ous worms have demonstrated, in order to place require-
ments on the defenses needed to stop such worms.

The spread of active worms is generally limited by how

quickly new potential hosts can be discovered. There
are multiple strategies, including hitlist scanning (Sec-
tion 3), topologically aware scanning (Section4), and
local subnet scanning (Section5), for quickly identify-
ing vulnerable hosts. A worm which uses some or all
of these strategies combined with fast scanning routines
would be very virulent, spreading worldwide in much
less than an hour. These high speed worms can outpace
any human-mediated defenses, requiring automatic de-
fenses to prevent outbreaks.

The staying power of active worms is a function of res-
canning strategies such as permutation scanning (Sec-
tion 6), preventing the remote removal of the worm (Sec-
tion 7, and an ability to exploit new attacks after the
worm is released (Section8). There are obvious solu-
tions to all these problems which a worm author could
employ.

Fortunately there are several published defenses (Sec-
tion 9) which, if employed, could significantly reduce
or eliminate such a worm’s ability to spread. Additional
defenses, including ISP coordination, are needed to se-
riously reduce a worm’s staying power.

2 Previous Active Worms

An active worm, unlike the slightly more common mail
worm, needs no human interaction to spread. It starts out
on a single host and scans for other vulnerable machines
on the Internet. When the scan finds a machine which
the worm can potentially infect, it sends out a probe to
infect the target. If successful, the worm transfers over a
copy of itself to the new host, which begins running the
worm.

There have been three highly significant active worm
1



0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Time (minutes)

In
fe

ct
ed

 m
ac

hi
ne

s

1M Vulnerable Machines 500k 250k

Figure 1: The effects of the fraction of vulnerable ma-
chines on worm propagation, using the simulator dis-
cussed later. All entries are for a hitlist (Section3) of
10,000 machines, 100 scans/worm/second, permutation
scanning (no halting). Graphs stop at 99% infection and
do not include the time to process the hitlist.

outbreaks: the Morris Internet Worm, Code Red[6],
and Nimda[2]. Additionally, many other less visible,
slower spreading worms like Ramen[3] and Cheese[4]
have been seen in the wild.

The main factor which limits how fast an active worm
can spread is how fast new targets can be discovered,
how many potential targets are available, and how fast
they can be infected. As seen in Figure1, fewer targets
will cause a worm to slow down, because any given scan
is less likely to find a valid target. The time it takes to
infect a target slows a worm slightly, by limiting the rate
at which new worms come online.

Worms have the potential to scan the net very quickly.
Although a single scan may take anywhere from a few
milliseconds (for a local host) to a second or longer (for a
remote machine), a multithreaded worm can easily scan
in parallel. A properly constructed scanner should be
able to have many scans outstanding, even using a TCP-
like back off strategy to insure that it is scanning at the
maximum possible rate. 100 scans per second should be
easily achievable, but even 10 scans per second results
in a fast worm.

A worm is also likely to separate out the act of scan-
ning and probing by only probing machines which the
scan suggests are actually vulnerable. Code Red was in-
discriminate in its probing, thus it tried to infect many
non-vulnerable web servers. This has two negative ef-
fects from the worm’s point of view: it plainly told

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48

Time (m)

In
fe

ct
ed

 M
ac

hi
ne

s

10 scans/second 100 scans/second

Figure 2: The effects of the scanning speed on worm
propagation. All entries are for a hitlist of 10,000 ma-
chines, 1M vulnerable hosts, and permutation scanning
(no halting). Graphs stop at 99% infection and do not
include the time to process the hitlist.

the recipient machine that the source machine was run-
ning the worm (resulting in several anti Code Red web
pages[1]) and it slowed down the rate of infection since
such probes are a significant waste of effort.

Even very fast active worms only have minor effects on
the modern network. Since the worm itself can be small
(100k is a reasonable size, Code Red was only a few
kilobytes), a probe to attempt an infection is smaller (1-
2k or so), and the scan itself is miniscule (a few dozen
bytes may be sufficient), the actual bandwidth require-
ments are surprisingly low. This is in marked contrast
to mail worms, which have to send out copies of them-
selves in order to attempt to infect a host.

The only significant network effect is a marked increase
in routing related requests, as the scanning worms keep
trying to probe different machines throughout the world.
This should have little effect on backbone routers, but
Code Red did demonstrate effects on some routers near
the periphery.

3 Hitlist Scanning

One of the biggest problems a worm faces is getting a
significant initial population. Although a worm spreads
exponentially during the early stages of infection, the
time needed to infect the first 10,000 hosts dominates the
infection time, as can be seen in Figure3 and Figure4.

2



Figure 3: Code Red’s Propagation Behavior, from David
Moore’s analysis[9]. Code Red v2 (a bug fix to use a
random seed, the initial release was buggy.) seems to
have been released at around 10:00 UTC.

There is a simple way for an active worm to overcome
this obstacle: hitlist scanning. Long before the worm
is released, the worm author collects a list of 10,000 to
50,000 potentially vulnerable machines with good net-
work connections. The worm, when released onto an
initial machine on this hitlist, begins scanning down the
list. When it infects a machine, it divides the hitlist in
half, communicating half to the recipient worm, keeping
the other half.

This quick division insures that even if only 10-20% of
the machines on the hitlist are actually vulnerable, an ac-
tive worm will quickly go through the hitlist and estab-
lish itself on all vulnerable machines in under a minute.
Although the hitlist may start at 200 kilobytes, it quickly
shrinks to nothing during the partitioning. This provides
a great benefit in constructing a fast worm by speeding
the initial infection1.

Constructing the hitlist is easy for a worm’s author.
Since the hitlist is constructed long before a worm is re-
leased, a slow scan would not be noticed. The Honeynet
project[10] has shown that scans occur at alarming fre-
quencies, thus another one could be conducted without
people correlating it with the later worm release. Since
such a scan is just to determine what OS and services
a machine is running, not whether the targeted hole ex-
ists, it could be completed long before an exploit for the

1It is pointed out by Staniford et al[12] that if the hitlist comprises
every vulnerable machine in the internet, complete infection can be
achieved in under a minute

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

450,000

500,000

0 30 60 90 120 150 180 210 240

Time (m)

In
fe

ct
ed

 M
ac

hi
ne

s

Code Red Like Parameters

Figure 4: A simulated Code Red v2 like worm: 500,000
vulnerable machines, 10 scans per second, random scan-
ning, starting on a single machine. Graph stops at 95%
infection

worm is developed. Finally, public surveys such as the
Netcraft Survey[13] could be used to generate the hitlist
for some services without requiring a scan.

3.1 Performance Analysis of Hitlist Scanning

A small, abstract simulator of a worm’s spread was built
in the C language. This simulator assumes complete
connectivity within a232 entry address space2 using a
pseudo-random permutation to map addresses to a sub-
set of vulnerable machines. A 32 bit, 6 round variant of
RC5 is used to generate all permutations.

Several parameters, including the number of vulnerable
machines in the address space, the number of scans per
second, the time to infect a machine, and the number
infected during the hitlist phase, and the type of sec-
ondary scan (permutation, partitioned permutation, and
random). The simulator assumes multithreaded scan-
ning and infection routines which can have many simul-
taneous requests outstanding.

In order to roughly insure that the simulator is producing
meaningful results, a rough simulation of Code Red v2
was performed, assuming 500,000 vulnerable hosts with
a worm design capable of 10 scans/second3. The simu-
lated worm takes approximatly 4 hours to reach gener-

2In general, the internet address space isn’t completely connected,
but it is close to fully connected. If a machine is not reachable from
an arbitrary point on the external network, it is probably not reachable
directly by a worm except through local scanning.

3Code Red v2 created 20 threads, each of which did an in-order
random scan: create a connection, see if it is established, send the
probe, wait for a response

3



0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

800,000

900,000

1,000,000

0 1 2 3 4 5 6 7 8 9 10 11

Time (minutes)

In
fe

ct
ed

 m
ac

hi
ne

s

1 entry 100 entry 10000 entry

Figure 5: The effects of hitlist size on worm propa-
gation. Permutation scanning, halting at 8 (Section6)
was used in all cases, 1,000,000 vulnerable hosts, 100
scans/second, 1 second to complete infection. Graphs
stop at 95% infection and do not include the time to pro-
cess the hitlist.

ally complete infection, only a factor of 2 off from the
actual Code Red v2, which was the bug fix released at
roughly 10:00 UTC and 18:00 UTC where most vulner-
able machines were infected.

redo with 300,000 instead of 500,000.

Hitlist scanning has a huge effect on speeding a worm’s
propagation time. As can be seen in Figure5, the
speedup is immense. It takes almost three times as long
for a worm with no hitlist to reach 95% infection, when
compared to a 10,000 entry hitlist. Even for a slow scan-
ning worm capable of only 10 scans/second, with 1 mil-
lion vulnerable hosts and a hitlist containing 10,000 vul-
nerable hosts, it still would only require an hour to infect
95% of the net.

4 Topological Scanning

An alternative to hitlist scanning is topologically aware
scanning, which uses information contained on the vic-
tim machine in order to select new targets. Email worms
have used this tactic since their inception, as they harvest
addresses from their victim in order to find new poten-
tial targets, while the Morris worm used this technique
because of the very sparse address space when it was
released.

Many future active worms could easily apply these tech-
niques during the initial spread, before switching to
a permutation scan once the known neighbors are ex-
hausted. An active worm which attacked a flaw in a Peer
to Peer application could easily get a list of peers from
a victim and use those peers as the basis of its attack,
which makes peer to peer applications (such as AOL In-
stant Messenger) highly attractive targets for worm au-
thors. Although we have yet to see such a worm in the
wild, these applications should be scrutinized for secu-
rity.

Similarly, a worm attacking web servers could look for
URLs on disk and use these URLs as seed targets. Since
these are known to be valid web servers, this would
greatly increase the initial spread by preferentially prob-
ing for likely targets.

Such topologically aware scanning can easily work to
accelerate initial propagations, as the worm is initially
able to find targets with a high degree of accuracy. The
effects end up being very similar to hitlist scanning,
making the initial growth occur much more quickly.

5 Local Subnet Scanning

One technique which Code Red II employed to great
success is local subnet scanning. Instead of simply
selecting machines at random, the worm preferentially
scanned for targets on “local” addresses, those which
were identical in the upper address range, a technique
which Nimda copied. This allows a single copy of a
worm running behind a firewall to rapidly spread to all
other vulnerable machines which might otherwise be
protected by the firewall.

There is nothing which prevents local subnet scanning
from being used in conjunction with other scanning
mechanisms or infection strategies: an initial fraction of
the scans could be devoted to probing local machines,
with the proportion eliminated once all local addresses
are scanned. This results in worms which can quickly
scan for potential targets when running behind a firewall
without slowing the normal infection process.

4



6 Permutation Scanning

In a permutation scan, all worms share a common
pseudo random permutation of the IP address space.
Such a permutation can be efficiently generated using
any block cipher of 32 bits with a preselected key: sim-
ply encrypt an index to get the corresponding address in
the permutation, and decrypt an address to get its index.

Any machines infected during the hitlist phase or local
subnet scanning starts scanning just after their point in
the permutation and scan through the permutation, look-
ing for vulnerable machines. Whenever it sees an al-
ready infected machine, it chooses a new, random start
point and proceeds from there. Worms infected by per-
mutation scanning would start at a random point.

This has the effect of providing a semi coordinated, com-
prehensive scan while maintaining the benefits of ran-
dom probing. Each worm looks like it is conducting a
random scan, but it attempts to minimize duplication of
effort. This keeps the infection rate higher and guaran-
tees an eventual comprehensive scan. After any partic-
ular copy of the worm sees several infected machines
without discovering new vulnerable targets, the worm
assumes that effectively complete infection has occured
and stops the scanning process.

A timer could then induce the worms to wake up, change
the permutation key to the next one in a prespecified se-
quence, and begin scanning through the new permuta-
tion, starting at its index and halting when another in-
stance is discovered. This process insures that every ad-
dress on the net would be efficiently rescanned at regular
intervals, detecting any machines which came onto the
net or was reinstalled but not patched, greatly increasing
a worm’s staying power within the net.

A further optimization is a partitioned permutation scan.
In this scheme, the worm has a range of the permutation
that it is initially responsible for. When it infects another
machine, it reduces its range in half with the newly in-
fected worm taking the other section. When the range
gets below a certain level, it switches to simple permuta-
tion scanning and otherwise behaves like a permutation
scan. It offers a slight but noticeable increase in scan-
ning efficiency.

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

0 1 2 3 4 5 6

Time (m)

In
fe

ct
ed

 M
ac

h
in

es

Random Scanning Permutation (Halt at 2)

Permutation (no halting) Partitoned Permutation (no halting)

Figure 6: The effects of random, permutation (no halt-
ing), permutation (halt if 4 infections are seen without
a new target), and partitioned permutation (no halting)
scanning. All cases were for 1,000,000 vulnerable hosts,
10,000 entry hitlist, 100 scans/worm/second, 1 second to
complete infection. Graphs stop at 99% infection and do
not include the time to process the hitlist.

6.1 Performance Analysis of Permutation
Scanning

Permutation scanning offers a significant gain towards
the final end of a worm’s spread, by insuring a com-
prehensive scan. Even with the halting approximation,
Figure6 shows the significant speedup achieved by per-
mutation scanning. Once 95% infection is achieved, all
the variants significantly surpass random scanning due
to the greater efficiency.

Of further interest, in Figure7, is the sensitivity to when
a permutation scanning worm assumes that there are too
few vulnerable machines and therefore stops scanning.
Even for halting when 2 infected machines are found
with no new target being discovered, the performance
is still very good, which suggests that such an estimate
is highly effective approximation of the scope of the in-
fection.

Figure8 shows how the number of worms still scanning
has dropped down considerably as nearly complete in-
fection is achieved, when halt at 2 is used. This means
that, by the time near complete infection is achieved, a
large fraction of the worms have gone silent, waiting to
be woken up at a later time.

5



0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

0 1 2 3 4 5

Time (m)

In
fe

ct
ed

 M
ac

h
in

es

Halt at 2 Halt at 4 Halt at 8

Figure 7: The effects of halt at 2, 4, and 8, on permu-
tation scanning. All cases were for 1,000,000 vulnera-
ble hosts, 10,000 entry hitlist, 100 scans/worm/second,
1 second to complete infection. Graphs stop at 99% in-
fection and do not include the time to process the hitlist.

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

0 1 2 3 4 5

Time (m)

In
fe

ct
ed

 M
ac

h
in

es

Infected Machines Dormant Worms

Figure 8: The number of dormant infections and to-
tal infections for a permutation scan which halts at 2.
1,000,000 vulnerable hosts, 10,000 entry hitlist, 100
scans/worm/second. Graph stops at 99% infection and
do not include the time to process the hitlist.

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

0 1 2 3 4 5 6 7 8 9 10

Time (m)

In
fe

ct
ed

 M
ac

hi
ne

s

Multimode Worm Dual Mode (50/50) Dual Mode(75/25)

Figure 9: The number of infected machines for a mul-
timode worm, a dualmode worm with equal distribution
of holes (50/50), and a dual mode worm with unequal
distribution of holes (75/25). For all cases, there are
1,000,000 vulnerable hosts, 10,000 entry hitlist (for the
common exploit), permutation scanning (halt at 2.) The
dual mode worms are 100 scans/worm/second, with the
multimode worm being 50 scans/second (but scanning
for both holes). Graph stops at 99% infection and do not
include the time to process the hitlist.

6.2 Multimode and Dual Mode Worms

Both the Morris worm and Nimda were multimode
worms: attempting to exploit multiple security holes in
order to spread to more targets. An interesting ques-
tion is how multimode worms interact with permutation
scanning. One option is the classic multimode worm:
when it scans a target, it searches for both security holes.
The second is a dual mode worm: it starts out searching
for the first hole, until it decides that the first hole has
been completely exploited. Then it switches to exploit-
ing the second hole.

Such a dual mode worm is easy to create. It starts out
exploiting the first bug, but instead of halting during the
permutation scan, it switches to the second bug. If a
machine is infected through the second bug, it only scans
for the second bug.

For an equal or nearly equal ratio, a multimode strat-
egy is superior, while a dual mode strategy is more ef-
fective when there is an unequal ratio between the ex-
ploits. This phenomenon is easily seen in Figure9,
where the multimode worm outperforms the equal ra-
tio dual-mode worm, but lags behind the unequal-ratio
dual mode worm. This is due to the phenomenon where
worms spread faster when more hosts are available.

6



0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

0 1 2 3 4 5 6 7 8

Time (m)

In
fe

ct
ed

 M
ac

hi
ne

s

Total Infected A infected B infected

Scanning for A Scanning for B Halted

Figure 10: The total number of infected machines, in-
fected by exploit A (75%) and by exploit B (25%)
and the number of worms probing for exploit A, ex-
ploit B, and halted for a dual mode worm. 1,000,000
total vulnerable machines, 10,000 entry hitlist, 100
scans/worm/second, switch or halt at 2. Graph stops at
99% infection and does not include the time to process
the hitlist

Since the unequal ration dual mode worm is first exploit-
ing the more common bug, it can spread very quickly,
with the comprehensive nature of permutation scanning
insuring that the rarer bug is still exploited quickly.

The behavior can be further seen in Figure10. As the
first exploit’s productivity is exhausted, the worms shift
over to the second exploit. With such a large popula-
tion scanning through the address space for the second
exploit, even a relatively rare exploit can be quickly ex-
hausted.

7 Countering Counterattacks

Although general antiworms, worms which remove
other worms, are not a productive idea4, responses to
worm probes can be a highly effective defense against
some worms. A good example are the many anti-Code-
Red default.ida[1] pages which were created after Code
Red II was released. These web servers would respond
to a probe by Code Red II by counterattacking the in-
fected web server, disabling the server, and resetting the
machine: halting the code red infection and preventing
reinfection. This is because a worm broadcasts its pres-
ence in order to spread, enabling active counter-attacks
if the worm creates or exposes a security hole on its host.

4due effect of bugs in the antiworm

This suggests that any author who wants to increase the
worm’s staying power will simply not repeat the mis-
takes of Code Red II and other worms by simply closing
the security holes used by the worm to infect a machine
and not creating any generally open security holes. Such
a worm would not be vulnerable to counterworms and
antiworms. Therefore we can not assume that counter
attacks and antiworms can form a viable defense against
a sophisticated worm.

8 Distributed Control and Update Mecha-
nisms

Some previous worms such as the Goner mail worm[5]
contained primitive remote control code, allowing the
authors and others to issue commands to a distributed
DoS module through an IRC channel. Others have at-
tempted to download updates from web pages. Both of
these mechanisms, when employed, were quickly coun-
tered by removing the pages and tracking the channels.
A more sophisticated method, direct worm to worm
communication, has been discussed but not seen in the
wild. Similarly, arbitrary updates have been discussed
but not seen.

8.1 Distributed Control

In a distributed-control worm, each worm has a list of
other known, running copies of the worm and an ability
to create encrypted communication channels to spread
information. Any new command has a unique identi-
fier. Once a worm has a copy of the command, the com-
mand is first verified, spread to every other known worm,
and then executed. This allows any issued command to
be initially sent to an arbitrary worm, where it is then
quickly spread to all running copies.

The key to such a network is the degree of connectivity
maintained, in order to overcome worms being removed
from the network and to hasten the spread of new com-
mands. Although it is obvious that a worm could spread
information to it’s neighbors about other worms, creat-
ing a more connected, highly redundant network, it is
useful to estimate the initial degree of connectivity with-
out these additional steps.

If each worm node only knows about other worms it has
probed, infected, or been probed by, the average connec-
tivity is still very high. With 1M hosts, using permuta-

7



tion scanning (with no halting), the average degree of
nodes in the worm network is 4 when 95% infection is
achieved, and 5.5 when 99% infection is achieved. Ad-
ditionally, each permutation based rescan will add 2 to
the degree of every worm. Thus, after a couple of timer
based rescans, the connectivity becomes very high.

Such a network could be used to quickly pass updates
to all running copies, without having a single point of
communication like that seen in previous worms. This
increasing the staying power by preventing the commu-
nication channel from being coopted by others while al-
lowing the author to control his creation with less risks
of being tracked and traced.

8.2 Programatic Updates

Similarly, there is nothing which prevents a worm’s
commands from being arbitrary code. Many operating
systems already support convenient dynamic code load-
ing which could be readily employed by a worm’s au-
thor or the worm could be written in a flexible language
combined with an interpreter. By making the commands
be general modules, a huge increase in staying power is
achieved.

Of particular interest are new attack modules. If the au-
thor discovers a new security hole and creates a new at-
tack module, this could be released into the worm net-
work. Even if only a few thousand copies of the worm
remain, this is enough of an installed base for a hitlist-
style effect to occur upon introduction of a new attack
module, quickly spreading the worm back through the
net. Antivirus vendors will need heuristics to prevent
reoutbreaks.

It is an interesting question whether it is possible for a
worm author to release such a worm with the crypto-
graphic modules correctly implemented. If the worm
author attemts to build his own cryptographic implemen-
tation, this would be a significant weakness which could
be exploited.

Yet there are many strong cryptographic applications
and libraries which could be used by a worm author to
provide the cryptographic framework, a good example
being the OpenSSL[?] library which inclues SSL en-
cryption (for link transfering), symmetric cyphers, hash
functions, and public key cyphers and signatures to pro-
vide for code signing.

9 Developing Defenses

Preventative techniques which linguistically prevent
buffer overflows, such as safe-C dialects[7], buffer over-
flow analysis[15], non-executable stack and heap poli-
cies, or Software Fault Isolation[16] are essential fea-
tures of any defense: preventing the common holes from
developing. Far too many exploitable buffer overflows
have been reported, which a worm author could easily
search for and exploit.

More importantly, defenses which contain an infection,
such as fine grained access controls[8] or host based in-
trusion detection through program analysis[14], are an
essential feature of a comprehensive defense. These are
necessary because even with tools to catch the common
faults, there still may be holes which a worm author
could exploit. By creating robust secondary defenses,
this greatly lessens the ability for someone to create a
worm. Defense in depth offers significant advantages
which should be exploited.

Yet there is onemore defense of note: a protocol for iso-
lating infected and compromised machines from the net.
Responding to infected machines is necessary because
even a relatively small number of machines can cause
severe disruptions through DDoS attacks or as launching
pads for successive outbreaks. Even without an outbreak
of such a damaging worm, this protocol is necessary be-
cause of the current prevalence of zombie machines and
their effect on the internet. Developing such a protocol
would be tricky, but possible.

10 Conclusions

Unfortunately, many obvious techniques such as these
could result in significantly faster and longer lived in-
ternet worms. Although they have yet to be seen in
practice, the techniques described here and elsewhere
could easily be employed by worm authors. By ana-
lyzing these techniques, this suggests that developing
and installing defenses should be a very high priority, as
the current systems are highly vulnerable to fast moving
worms.

The potential for fast worms is astonishing: optimized
scanning routines combined with a reasonable hitlist size
can produce worms which can easily spread worldwide
in under an hour if a suitable hole is exploited. Similarly,
permutation scanning combined with distributed updates

8



could create a worm which would remain a significant
threat to weeks or months from the moment of initial
release. The threat is too great to ignore.

11 Acknowledgments

This work is funded in part by support from DARPA,
with additional support from the California MICRO
program, ST Microelectronics, and Xilinx. Thanks to
Michael Constant for helping develop the Hitlist scan-
ning concept, Jon Kuroda, Jim Ausman, David Wagner,
and Stuart Staniford for additional suggestions and com-
ments.

References

[1] Das Bistro Project’s anti-code-red default.ida.
http://www.dasbistro.com/default.ida.

[2] CERT. Cert advisory ca-2001-26 nimdaworm,
http://www.cert.org/advisories/ca-2001-26.html.

[3] CERT. Cert incident note in-2001-01,
http://www.cert.org/incidentnotes/in-2001-
01.html.

[4] CERT. Cert incident note in-2001-05,
http://www.cert.org/incidentnotes/in-2001-
05.html.

[5] CERT. Cert incident note in-2001-15,
http://www.cert.org/incidentnotes/in-2001-
15.html.

[6] Cooperative Association for Internet
Data Analysis. Caida analysis of code red,
http://www.caida.org/analysis/security/code-red/.

[7] Trevor Jim, Greg Morrisett, Dan Grossman,
Michael Hicks, James Cheney, and Yan-
ling Wang. Cyclone: a safe dialect of c,
http://www.research.att.com/projects/cyclone/papers/cyclone-
safety.pdf.

[8] Peter Losccco and Stephen Smalley. Integrating
flexible support for security policies into the linux
operating system. InProceedings of the 2001
USENIX Annual Technical Conference. USENIX,
2001.

[9] David Moore. The spread
of the code red worm (crv2),
http://www.caida.org/analysis/security/code-
red/coderedv2analysis.xml.

[10] The Honeynet Project.
http://project.honeynet.org/.

[11] E. H. Spafford. The internet worm incident. In
C. Ghezzi and J. A. McDermid, editors,ESEC‘89
2nd European Software Engineering Conference,
University of Warwick, Coventry, United King-
dom, 1989. Springer.

[12] Stuart Staniford, Gary Grim, and Roelof Jonkman.
Flash worms: Thirty seconds to infect the internet,
http://www.silicondefense.com/flash/.

[13] The Netcraft Survey.
http://www.netcraft.com/survey/.

[14] David Wagner and Drew Dean. Intrusion detec-
tion via static analysis. InProceedings of the 2001
IEEE Symposium on Security and Privacy. IEEE,
2001.

[15] David Wagner, Jeffrey Foster, Eric Brewer, and
Alexander Aiken. A first step towards automatic
detection of buffer overrun vulnerabilities. InPro-
ceedings of the Internet Society Network and Dis-
tributed Security Symposium.

[16] Robert Wahbe, Steven Lucco, Thomas E. Ander-
son, and Susan L. Graham. Efficient software-
based fault isolation.ACM SIGOPS Operating Sys-
tems Review, 27(5):203–216, December 1993.

9


	Introduction
	Previous Active Worms
	Hitlist Scanning
	Performance Analysis of Hitlist Scanning

	Topological Scanning
	Local Subnet Scanning
	Permutation Scanning
	Performance Analysis of Permutation Scanning
	Multimode and Dual Mode Worms

	Countering Counterattacks
	Distributed Control and Update Mechanisms
	Distributed Control
	Programatic Updates

	Developing Defenses
	Conclusions
	Acknowledgments

